
Summary: Our new meshing paradigm is based on random sampling.
Underground storage sites for carbon sequestration might fracture when receiving high pressure
gases. When simulating this, we prefer random meshes because they produce more realistic cracks.
We create hybrid meshes that conform to naturally occurring complex structures, such as long, thin
layers with twisting, faulting, and pinch-offs.

 Mesh points are from a maximal Poisson-disk sample. The boundary of the domain is
sampled differently for primal (simplicial) and dual (Voronoi polyhedral) meshes. A polyhedral mesh is
body-fitted, but its dual is not. Mesh elements have good quality.

 Except for some minor log n operations when generating unbiased points, every step is local
and can be done in constant time, leading to O(n) time and memory. The locality and fixed size of the
steps facilitate scalability and also GPU implementations. Our point codes take less memory and time
than the alternatives, and triangulating the points is competitive with Triangle.

 Random Meshes for Carbon Sequestration

1. Maximal Poisson-Disk Sampling (MPS)
MPS selects random points {xi} = X, from a domain, D. There is an exclusion/inclusion radius r:
no two sample points are closer than r to one another; and every location is within r of a sample.
The probability P of selecting the next point xi from a disk-free region Ω	
 is proportional to Ω’s
area. These properties lead to Delaunay meshes with uniformly random edge orientations.!
!
!
!
!
!
!
!
A maximal r-disk sample (1b) (1c) is equivalent to a maximal sample of non-overlapping r/2-disks,
known as a random close sphere packing. They appear frequently in nature: e.g. sand, atoms in a
liquid, trees in a forest. Processes generating them include random sequential adsorption in
chemistry, and the hard-core Gibbs process in statistics.

3. Constrained Delaunay Triangulation (CDT)

Unit cubes with non-overlapping r/2 spheres.!

!"#!$%
&"#!$%

'"#!$%

!"#($%

!"

#"

$%"

&'"

%!"

$'#"

'(%"

($'"

$)'!"

')!#"

)*)$")*)!")*$%")*%!" '*(%" $)*'!" !)*+%"

)*
+
,%
-.
,/
01

".
2%

30*14.%-+*55*01.2%

6,7*85%936%:;1<+,%%
=>%?5@07*4A+%81"%B*+,1.*01%

',-$."
',-'."
&,-'."
!,-'."
/01234"',"
/01234"&,"
/01234"!,"

!"#!$%&"#!$%'"#!$%
!"#($%

!"!#$

!"!%$

!"&'$

!"()$

!"'#$

&")%$

)"*'$

!"!&$!"!#$!"&'$!"'#$)"*'$ &!")#$ #!"+'$

)
*+

,-
.%
/0
12
%

3,4567%/+4884,572%

9*-4:8%)39%)*+,-.%%
1.%;8<,-46=+%:5"%>4+*574,5%

),-&.$

),-).$

(,-).$

#,-).$

/01234$),$

/01234$(,$

/01234$#,$

!"#$%&'()*$
+,,-$./%$

012$%&'()*$
345-$./%$

012$6"7$
438-$./%$

012$2'()9:*&$

!"

#"

$!"

$#"

%!"

%#"

!&!" !&#" $&!" $&#" %&!" %&#"

2(
;
&$
<%
&=
>9

?%
@$

">(9A%$<;(**(>9%@$

012B!"#$CD9E;&$$
#&'()*F6"7F2'()9:*&$

We [4] simulated the injection of CO2 below a sub-scale model of a caprock layer. We used a Voronoi
mesh. The initial fractures represent joints that were sealed, but reactivated by the injection into the
reservoir below the caprock. Crack nucleation and growth derives from a limit surface of the allowable
stress states. A cohesive law decays as the crack opens. The mesh randomness models epistemic
uncertainty in the material strength. An ensemble of meshes predicts a range of plausible outcomes.

6. Caprock Fracture

Snapshots over time. Color represents maximum principal stress, with red being the most extreme.
4. Voronoi Meshing

A. Mesh B. Clipped mesh C. Zoom-in D. Zoom-in

C

D

Publications
1.  Mohamed S. Ebeida, Anjul Patney, Scott A. Mitchell, Andrew A. Davidson, Patrick M. Knupp and John

D. Owens, “Efficient maximal Poisson-disk sampling,” SIGGRAPH2011, August 7-11, Vancouver,
Canada, SAND2011 - 0260C.

2.  Mohamed S. Ebeida, Scott A. Mitchell, Anjul Patney, Andrew A. Davidson, and John D. Owens, “A
simpler algorithm for bigger maximal Poisson-disk samples in higher dimensions,” SAND2011 -
3606C. (under review)

3.  Mohamed S. Ebeida, Scott A. Mitchell, Andrew A. Davidson, Anjul Patney, Patrick M. Knupp and John
D. Owens, “Efficient and good Delaunay meshes from random points,” SIAM conference on
Geometric and Physical Modeling (GD/SPM11), October 24-27, 2011, Orlando, Florida, SAND2011 -
0519C.

4.  Mohamed S. Ebeida, Patrick M. Knupp, Vitus J. Leung, Joseph E. Bishop, and Mario J. Martinez,
“Mesh generation for modeling and simulation of carbon sequestration process,” SciDAC2011, July
10-14, 2011, Denver, CO, SAND2011 - 3771A.

5.  Mohamed S. Ebeida, and Scott A. Mitchell, “Uniform random Voronoi meshes,” 20th International
meshing roundtable, October 23-26, Paris, France 2011.

6.  Mohamed S. Ebeida and Patrick M. Knupp, “LBMD: A Layer-based Mesh Data structure Tailored for
Generic API Infrastructures”, 20th AIAA Computational Fluid Dynamics Conference, June 27-30,
Honolulu, Hawaii, SAND2010 - 8006C.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2011-7609P.

Mohamed S. Ebeida, Scott A. Mitchell, Patrick M. Knupp,
Vitus J. Leung, Joseph E. Bishop, Mario J. Martinez

Anjul Patney, Andrew A. Davidson, John D. Owens

 We sample non-convex domains,
but many others can only sample cubes.!

20th IMR, Paris, France, 2011. !

5. GPU Codes and Performance
Our serial CDT code [3] is close to the speed of the
popular Triangle software. (But not for generating
points.) Our GPU code is 2x faster.

Iteration 0 end Iteration 1 start Iteration 2 start Iteration 1 end

!"

!#$"

!#%"

!#&"

!#'"

("

!"

("

$"

)"

%"

*"

&"

+"

!" *" (!" (*" $!" $*"

!
"#
$%
&
'
(&
)(
*
&
+,
-(
.
&
/
0
"0
,
(

+'
(.
1
""
0
'
2(
3
2#
4
0
(

5
1
6
7
0
"(
&
)(
*
&
+,
-(

8&
4
9
:
(-
$#
80
(

;<#-0(==(32#40(

*&+,-(.&/0"0,(>0"(32#40(

,-./012/34-"5/34"

6789:;"4<"=412>"

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

!#

(!!!#

$!!!#

)!!!#

%!!!#

*!!!#

&!!!#

+!!!#

!# (!!!!# $!!!!#)!!!!# %!!!!# *!!!!# &!!!!# +!!!!#

!
"
#
"
$
%&
'
"
()
*(
+
,
-)
.
/(
%,
&
%(
0
1%
(

2
3
4
5
"
-(
)
*(
0
1%
/(

2345"-()*(6&-%/(+,-).$((

78&//1#(6&-%(+,-).1$'(

But it is difficult to mimic these natural or statistical
processes with an efficient algorithm. The classic approach
is dart-throwing: successively generate an unbiased point
(dart) and reject it if it is too close to a prior point. It is pretty
easy to get close to maximality, but placing darts in the last
few uncovered voids may take nearly forever.

In 2011, we published two methods [1,2]
to solve this problem. They both use a

background grid of squares to guide the
process. The disks for a void (uncovered
area) are local, and there are less than

10 of them.

[2]. Our second method is simpler and more memory efficient, especially for higher dimensions d.
Instead of creating polygons, we use a flat quadtree to successively refine our approximation to
the uncovered domain. This is very efficient, since cells are described by d indices and one global
level: no tree, no pointers, no geometry. Prior approaches refine the quadtree locally, but this is not
needed. Our method works in any dimension and has empirical time and memory complexity O(n).!

[1]. We gave the first optimal MPS algorithm satisfying all the criteria, in 2d. It constructs polygonal
outer approximations to the remaining uncovered voids. To be bias free, our sampling process
chooses from these polygons based on their area. Polygons are sufficiently close to the arc-gon
voids, so that a constant fraction of the generated points are disk-free. Only O(n) dart throws are
needed. It takes O(n log n) expected time and O(n) deterministic memory.

2. Hybrid Meshing
The hybrid mesher “glues together” different meshing algorithms. We have triangle,
quadrilateral, and polyhedron meshes. An algebraic method generates structured quad
meshes; otherwise points are generated using Poisson-disk samples. Meshes are conformal,
with hanging nodes between primal and Voronoi regions. The MeshingGenie software will be
released openly with Trilinos [6].

The CDT of a point is constructed in
constant time: use the background
grid to find potential neighbors, then
use angular sorting and empty-circle
checks.

We [3] insert points to produce an unbiased maximal sampling, and provably get good quality
triangles as a byproduct. In contrast Delaunay refinement algorithms insert deterministic
points to remove poor-quality triangles, and get a biased maximal sampling as a byproduct.

We protect the boundary by sampling a
neighborhood of it before the interior.

120° circle

long edge

interior

exterior

random
interior disk

a b

We iterate over each sample point. Communication between the triangulations for different
points is not required where the CDT is unique. The algorithm is O(n) in time and space.

Edge Length Distribution
Internal Edges

Boundary Edges

Angle Distribution

Internal Triangle Angles

Boundary Triangle Angles

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Length Edge Ratio to r (bin min)

25 35 45 55 65 75 85 95 105 115 125
Angle (bin min degrees)

Our provable and empirical
bounds on angles and
edge lengths are
comparable to Delaunay
refinement methods.

Our polyhedral mesh [5] is not the dual of a body-fitted simplicial mesh! This is because we
do not sample the boundary, except near reflex features. This is better because it gives
random dihedrals at the boundary, leading to more realistic fracture simulations. The final
mesh has bounded facet dihedrals and polyhedron aspect ratios.

To construct a Voronoi cell, the background grid is very helpful, as it was for the CDT: gather
all the nearby points in constant time; successively cut a bounding box by the Voronoi planes
of the nearby points. The algorithm is O(n) in time and space, and works in 3d.

Our GPU code uses a large pool of threads to
generate points in parallel. To remain unbiased, ties
between points with overlapping disks are broken
using thread ids. Memory bandwidth and capacity
are the limiting factors.

Discrete algorithms are notoriously difficult to parallelize, due to random memory access patterns.
Nonetheless, our GPU code beats the serial one by a factor of ten for generating points, and a factor
of two for triangulating them. Our simpler serial algorithm [2] is faster and takes less memory than the
best alternative, by Gamito.

